Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/27184
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorPalacios Baldeón, Joe Albino-
dc.contributor.authorPaucar Rojas, Rina Roxana-
dc.creatorPaucar Rojas, Rina Roxana-
dc.date.accessioned2024-06-01T18:47:46Z-
dc.date.available2024-06-01T18:47:46Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/27184-
dc.description.abstractSea S una superficie suave, proyectiva y conexa sobre C. Sea £ el sistema lineal completo de un divisor muy amplio D en S y sea d = dim(£). Para cualquier punto cerrado t e £ = Pd*, sea Ht el hiperplano en Pd correspondiente a t, Ct = Ht n S la correspondiente sección hiperplana de S, y rt el embebimiento cerrado de Ct en S. Sea As el lugar discriminante de £ parametrizando secciones hiperplanas singulares de S y U = £ \ As su complemento parametrizando secciones hiperplanas suaves de S. Sean CHo(S)deg=o y CH0(Ct)deg=0 los grupos de Chow de 0-ciclos de grado cero en S y Ct respectivamente. En esta tesis probamos que para Ct una seccion hiperplana suave de S el Gysin kernel, i.e., el kernel del Gysin homomorfismo de CH0(Ct)deg=0 a CH0(S)deg=0 inducida por rt, es una union contable de trasladados de una subvariedad abeliana At contenida en el Jacobiano Jt de la curva Ct. Luego probamos que existe un subconjunto c-abierto U0 en U tal que At = 0, para todo t e U0, o At = Bt, para todo t e U0, donde Bt es una subvariedad abeliana de Jt. Finalmente, probamos que si estamos en el caso donde As es una hipersuperficie, para todo t e U tenemos que At = 0 o At = Bt. Como una aplicación del resultado principal de la tesis probamos un teorema sobre 0-ciclos en superficies y estudiamos la conexión de este teorema con la conjetura de Bloch y con la noción de curvas ciclo constantes.es
dc.description.abstractLet S be a connected smooth projective surface over C. Let £ be the complete linear system of a very ample divisor D on S and let d = dim(£). For any closed point t G £ = Pd*, let Ht be the hyperplane in Pd corresponding to t, Ct = Ht n S the corresponding hyperplane section of S, and rt the closed embedding of Ct into S. Let AS be the discriminant locus of £ parametrizing singular hyperplane sections of S and U = £ \ AS its complement of smooth hyperplane sections of S. Let CH0(S)deg=0 and CHo(Ct)deg=o be the Chow groups of 0-cycles of degree zero of S and Ct respectively. In this thesis we prove that for Ct a smooth hyperplane section of S the Gysin kernel, i.e., the kernel of the Gysin homomorphism from CH0(Ct)deg=0 to CH0(S)deg=0 induced by rt, is a countable union of translates of an abelian subvariety At inside the Jacobian Jt of the curve Ct. Then we prove that there is a c-open subset U0 in U such that At = 0, for all t G U0, or At = Bt, for all t G U0; where Bt is an abelian subvariety of Jt. Finally, we prove that if we are in the case where AS is an hypersurface, then At = 0 or At = Bt, for every t G U. As an application of the main result of the thesis we prove a theorem on 0-cycles on surfaces and we study the connection of this theorem with Bloch’s conjecture and constant cycles curves.en
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isoengen
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectNúcleo del homomorfismo de Gysines
dc.subjectTeorema sobre 0-cicloses
dc.subjectConjetura de Bloches
dc.subjectCurvas ciclo constanteses
dc.titleOn the Kernel of the Gysin Homomorphism on Chow Groups of Zero cycles and Applicationsen
dc.typeinfo:eu-repo/semantics/doctoralThesises
thesis.degree.nameDoctor en Ciencias con Mención en Matemáticaes
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgradoes
thesis.degree.levelDoctoradoes
thesis.degree.disciplineDoctorado en Ciencias con Mención en Matemáticaes
thesis.degree.programDoctoradoes
renati.advisor.orcidhttps://orcid.org/0000-0003-4239-2746es
renati.author.dni45154137-
renati.advisor.dni41809849-
renati.typehttp://purl.org/pe-repo/renati/type#tesises
renati.levelhttp://purl.org/pe-repo/renati/nivel#doctores
renati.discipline541018-
renati.jurorGuletskii, Vladimir-
renati.jurorHuybrechts, Daniel-
renati.jurorOchoa Jiménez, Rosendo-
renati.jurorMetzger Alván, Roger Javier-
dc.publisher.countryPEes
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.01.02es
Aparece en las colecciones: Doctorado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
paucar_tr.pdf1,06 MBAdobe PDFVisualizar/Abrir
paucar_tr(acta).pdf689,82 kBAdobe PDFVisualizar/Abrir
carta_de_autorización.pdf168,84 kBAdobe PDFVisualizar/Abrir
informe_de_similitud.pdf253,33 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI