Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/27500
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRadzinsky Waxenghiser, Zurik-
dc.creatorRadzinsky Waxenghiser, Zurik-
dc.date.accessioned2024-10-31T22:37:42Z-
dc.date.available2024-10-31T22:37:42Z-
dc.date.issued1978-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/27500-
dc.description.abstractEl objeto de este trabajo es presentar un procedimiento iterativo para el análisis de estructuras aporticadas planas constituidas por barras que forman estrellas rectangulares y en la que una o más vigas, interrumpen en una o más crujías, estructuras a las que se ha denominado estructuras a porticadas con mezanine. Se presenta además un procedimiento para el análisis de estructuras con mezanine y con articulaciones en los extremos de las columnas. La deducción de las ecuaciones que posibilitan la obtención de los momentos parciales debido a los desplazamientos laterales relativos de los pisos se hace en el acápite 3.2. 3. Teniendo en consideración las condiciones de equilibrio para fuerzas horizontales en 2 secciones se derivan las ecuaciones de los giros en las columnas afectadas con la mesa niña coma dichas ecuaciones aplicadas en los sucesivos ciclos de interacción permiten calcular los momentos parciales, por desplazamiento lateral en las columnas del mezanine. La deducción de las ecuaciones se ha hecho suponiendo que las cargas laterales están aplicadas en los nodos coma sin embargo en el acápite que sigue al 3. 2.3 se demuestra que en general el método iterativo es aplicable al caso en el que las cargas laterales están actuando en el cuerpo de las columnas siempre que dichas fuerzas se sustituyen por cargas de nudo equivalentes. Las cargas de nudo equivalentes están constituidas por los momentos de empotramiento perfecto y por fuerzas iguales y de sentido contrario a las reacciones totales en los extremos de las columnas, cuando se considera están empotrada en sus extremos. Como las ecuaciones de partida son las que Kani y los momentos parciales debido a los giros de los nudos se aproximen por interacción por el método del mismo autor. En el acápite 3.2 teniendo en cuenta las condiciones en un nuevo genérico se derivan las ecuaciones que posibilita obtener por iteración los momentos parciales debidos a los desplazamientos laterales relativos de los pisos cuando las columnas de un entrepiso tienen la misma altura coma cuando las columnas de un entrepiso tienen diferentes alturas y cuando existe mezanine. En el acápite 4 se explica la forma de analizar una estructura sin desplazamientos laterales, tratándola como un caso particular en el que no existen momento por desplazamiento lateral relativo. Hoy en el acápite 5 se dan ejemplos numéricos que ilustran la aplicación del método. En el acápite 6 se establece el procedimiento para la comprobación de los resultados por equilibrio y por compatibilidad de deformaciones.es
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectEstructuras aporticadases
dc.subjectDiseño estructurales
dc.titleAnálisis de estructuras aporticadas planas con mezzanine y con articulaciones intermediases
dc.typeinfo:eu-repo/semantics/bachelorThesises
thesis.degree.nameIngeniero Civiles
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Ingeniería Civiles
thesis.degree.levelTítulo Profesionales
thesis.degree.disciplineIngeniería Civiles
thesis.degree.programIngenieríaes
Aparece en las colecciones: Ingeniería Civil

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
radzinsky_wz.pdf27,24 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI