Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/3267
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMartínez Gómez, Jesus-
dc.contributor.authorMartínez Del Horno, Miguel-
dc.contributor.authorCastillo Cara, Manuel-
dc.contributor.authorBrea Luján, Víctor Manuel-
dc.contributor.authorOrozco Barbosa, Luis-
dc.contributor.authorGarcía Varea, Ismael-
dc.creatorMartínez Del Horno, Miguel-
dc.creatorGarcía Varea, Ismael-
dc.creatorGarcía Varea, Ismael-
dc.creatorMartínez Gómez, Jesus-
dc.creatorMartínez Gómez, Jesus-
dc.date.accessioned2017-06-14T16:47:18Z-
dc.date.available2017-06-14T16:47:18Z-
dc.date.issued2016-08-
dc.identifier.issn15501329-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/3267-
dc.description.abstractThe accurate localization of end-users and resources is seen as one of the main pillars toward the successful implementation of context-based applications. While current outdoor localization mechanisms fulfill most application requirements, the design of accurate indoor localization mechanisms is still an open issue. Most research efforts are focusing on the design of mechanisms making use of the receiver signal strength indications generated by WLAN (wireless local area network) devices. However, the accuracy and robustness of such mechanisms can be severely compromised due to the random and unpredictable nature of radio channels. In this article, we develop a methodology incorporating various algorithms capable of coping with the unpredictable nature of radio channels. Following a holistic approach, we start by identifying the wireless equipment parameter setting, better meeting the implementation requirements of a robust indoor localization mechanism. We then make use of RANdom SAmple Consensus paradigm: a robust model-fitting mechanism capable of smoothing the data captured during the space survey. Using an experimental setup, we evaluate the benefits of integrating the floor plan and an ordinary Kriging interpolation algorithm in the estimation process. Our main findings show that our proposal can greatly improve the quality of the information to be used in the development of particle-filter-based indoor localization mechanisms.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherHindawi Publishing Corporationes
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84984889419&doi=10.1177%2f1550147716661953&partnerID=40&md5=ecea0769133f70c3dd4c5ad51e76f51ees
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectLocalizationes
dc.subjectMobile deviceses
dc.subjectSignal processinges
dc.subjectModel fittinges
dc.subjectWireless local area networkses
dc.subjectSpatial analysises
dc.titleSpatial statistical analysis for the design of indoor particle-filter-based localization mechanismses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.journalInternational Journal of Distributed Sensor Networkses
dc.identifier.doi10.1177/1550147716661953es
dc.contributor.emailluis.orozco@uclm.eses
Aparece en las colecciones: Instituto General de Investigación (IGI)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Spatial statistical analysis for the design of indoor particle-filter-based localization mechanisms.pdf154,78 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI