Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.14076/4543
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Velásquez Castañón, Oswaldo José | - |
dc.contributor.author | Epequín Chávez, Jesua Israel | - |
dc.creator | Epequín Chávez, Jesua Israel | - |
dc.creator | Epequín Chávez, Jesua Israel | - |
dc.date.accessioned | 2017-09-05T20:51:07Z | - |
dc.date.available | 2017-09-05T20:51:07Z | - |
dc.date.issued | 2012 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.14076/4543 | - |
dc.description.abstract | El objetivo de este trabajo es analizar la continuidad de la función II X ,P : [0,1]n -> L2 (0, oo) ( Ɵ1 ,· · · , Ɵn) -> Pvect( PƟ1 , .. pƟn )(SX ) , donde x es la función característica del intervalo (0, 1] en (0, ∞), Pok(s) = {ok/s} para k = 1, . . . , n y Pvect(ρα1 , . . . , ραn ) (x) es la proyección ortogonal de x sobre el subespacio vectorial generado por el conjunto {ρα1 , . . . , ραn } en L2 (0, ∞). La elección de este operador es motivada por el criterio de Beurling que revela la dualidad existente entre las propiedades de la función zeta de Riemann y las de la función parte fraccionaria. Comenzamos presentando la función (, el producto de Euler asociado a ella y demostrando su ecuación funcional. A continuación, exponemos la prueba del criterio de Beurling, el cual nos proporciona una equivalencia para la hipótesis de Riemann en términos de la densidad en L2 ( 0,∞) del espacio formado por las funciones Seguidamente caracterizamos la continuidad de un operador más general donde X es un espacio topológico, H un espacio de Hilbert y las funciones uk: X -> H son continuas para k = 1,...., n. Tal caracterización se da en términos de la convergencia débil de subespacios vectoriales de H. Introducimos la medida de Haar m de un grupo abeliano localmente compacto G, y damos condiciones suficientes sobre una función f Ɛ L1(G, m) que garanticen la continuidad de donde f'Ɵk es una dilatación de f para k = 1, . . . , n y y Ɛ L2 (G, m). Finalmente, tomamos CJ = (O, ∞), f (t) = {i/t } y = x y demostramos que en este caso se verifican las condiciones discutidas previamente. Esto establece la continuidad de II x,p· | es |
dc.description.uri | Tesis | es |
dc.format | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | Universidad Nacional de Ingeniería | es |
dc.rights | info:eu-repo/semantics/restrictedAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | es |
dc.source | Universidad Nacional de Ingeniería | es |
dc.source | Repositorio Institucional - UNI | es |
dc.subject | Transformaciones (Matemática) | es |
dc.subject | Funciones gamma | es |
dc.title | Estudio de la continuidad de un operador relacionado al criterio de Nyman-Beurling para la hipótesis de Riemann | es |
dc.type | info:eu-repo/semantics/bachelorThesis | es |
thesis.degree.name | Licenciado en Matemática | es |
thesis.degree.grantor | Universidad Nacional de Ingeniería. Facultad de Ciencias | es |
thesis.degree.level | Título Profesional | es |
thesis.degree.discipline | Matemática | es |
thesis.degree.program | Licenciatura | es |
Aparece en las colecciones: | Matemáticas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
epequin_ cj.pdf | 4,03 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons
Indexado por: