Por favor, use este identificador para citar o enlazar este ítem: http://cybertesis.uni.edu.pe/handle/uni/2450
Título : Teorema de Osledets
Autor : Villavicencio Fernández, Helmuth
Palabras clave : Matemáticas aplicadas;Teorema de Oseledets;Dimensión finita e infinita
Fecha de publicación : 2015
Editorial : Universidad Nacional de Ingeniería. Programa Cybertesis PERÚ
Resumen : En el presente trabajo hacemos un estudio del Teorema de Oseledets para difeomorfismos de clase C1 sobre variedades Riemannianas compactas, conexas de dimension finita, es decir dado x E M estamos interesados en los posibles valores reales de límsup—log ||Dxfnv|| = A(x,v), donde v E TxM y la naturaleza medible de la aplicación x M A(x,v). Ricardo Mañe, esboza una prueba de este resultado a través de uno más general para isomorfismos de fibrados y es una de las versiones mías aceptadas del Teorema de Oseledets. Probamos de una manera detallada, la versión de R. Mañe del Teorema Multiplicativo de Oseledets. Notemos que probando dicho resulta¬do el teorema de Oseledets se sigue al considerar el isomorfismo de fibrados Df : TM M TM tal que Df (x, v) = (f (x), Dxfv). Además presentamos una versión más completa de este último, dada por Pe¬ter Walters donde usando las ideas de R. Mañe y J. Bochi probamos el caso bilátero de esta versión. Motivados por las propiedades del espectro de un ope¬rador compacto, presentamos una versión del teorema para espacios de Banach apoyóndonos una vez mas en las ideas de R. Mane. Finalmente presentamos, a modo de conclusión, algunos comentarios con res¬pecto a las versiones probadas del Teorema de Oseledets en dimensión finita e infinita. Además analizamos la relación entre las hipótesis de estas versiones, sus nociones de medibilidad y convergencia.
URI : http://cybertesis.uni.edu.pe/handle/uni/2450
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones: Maestría

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
villavicencio_fh.pdf779,23 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.