Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.14076/1897
Title: | Algunos metodos variacionales de minimización de operadores |
Authors: | Palacios Felix, Jorge Luis |
Advisors: | Guimaray Huerta, Héctor Carlos |
Keywords: | Teorema de Hahn-Banach;Derivadas;Lagrange;Operadores;Matemática |
Issue Date: | 1990 |
Publisher: | Universidad Nacional de Ingeniería |
Abstract: | En el presente trabajo se han considerado tres capítulos los cuales han sido desarrollados de la siguiente manera: En el capítulo I, hacemos un estudio y formulación de resultados básicos: El Teorema de Hahn-Banach, derivadas de Gateaux, la formulación de Lagrange generalizada, la desigualdad de Lipschitz para Operadores, la formulación de Taylor, resultados sobre un Operador Potencial. En el capítulo II hacemos una caracterización de mínimos de funcionales no lineales. Tomamos en cuenta ciertos criterios para la Semicontinuidad inferiormente débil de funcionales, criterios para el mínimo de funcionales definidas en un espacio BANACH reflexivo y los resultados del teorema de Weierstrass generalizado. Se da ciertas condiciones suficientes para que el problema de minimizacion de una funcional f sea consistente, donde dichas condiciones conducen a desigualdades. En el capítulo III, se analiza los tres métodos de minimización de funcionales no lineales. |
URI: | http://hdl.handle.net/20.500.14076/1897 |
Rights: | info:eu-repo/semantics/restrictedAccess |
Appears in Collections: | Matemáticas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
palacios_fj.pdf | 7,98 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License
Indexado por: