Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.14076/23011
Title: Identificación de segmentos de riesgo en la gestión financiera del negocio inmobiliario
Authors: Takuche Cantu, Elvis Fredy
Advisors: Huamanchumo De la Cuba, Luis Emilio
Keywords: Análisis de Riesgo;CRISP-DM;Arboles de Clasificación Chaid
Issue Date: 2022
Publisher: Universidad Nacional de Ingeniería
Abstract: El mercado inmobiliario de venta de lotes de terrenos oferta su producto bajo dos modalidades, las ventas financiadas y las ventas al contado. La cartera producto de las ventas financiadas genera un alto ratio de morosidad en el financiamiento ya que estas ventas antes del cierre no pasan por una evaluación crediticia. Para reducir la ratio de morosidad de la cartera vigente se ha aplicado dos procesos estadísticos, una en donde se ha identificado segmentos de clientes con características sociodemográficas y probabilidades de no pago similares y, la otra asignando una probabilidad de no pago a cada uno de los clientes donde en ambos métodos se ofrecieron planes de refinanciamiento y reprogramación a clientes con significativa probabilidad de no pago. Para el proceso de construcción del SCORING se tomó en cuenta la metodología CRISP- DM (Cross Industry Standard Process for Data Mining), así como las herramientas estadísticas de Regresión Logística y Árboles de Clasificación (Chaid). La intervención redujo la ratio de morosidad en un 20%, lo cual ha generado un mayor ingreso económico a la compañía y el cumplimiento de la misión de la organización al hacer realidad el sueño del terreno propio de los clientes.
The real estate market for the sale of lots of land, offers its product under two modalities, financed sales and cash sales. The portfolio resulting from the financed sales generates a high default ratio in the financing since these sales before closing do not go through a credit evaluation. To reduce the high delinquency ratio of the current portfolio, customer segments with similar sociodemographic characteristics and probabilities of non- payment have been identified, where massive refinancing and installment rescheduling plans were offered. As well, an individual probability of default was assigned to the portfolio, where more flexible reprogramming and special refinancing methods were proposed to clients. For the SCORING construction process, the CRISP-DM methodology (Cross Industry Standard Process for Data Mining), logistic regression and classification trees (Chaid) were taken into account. The intervention reduced the delinquency ratio by 20%, which has generated greater economic income for the company and fulfilled the mission of the organization by making the dream of the clients' own land come true.
URI: http://hdl.handle.net/20.500.14076/23011
Rights: info:eu-repo/semantics/restrictedAccess
Appears in Collections:Ingeniería Estadística

Files in This Item:
File Description SizeFormat 
takuche_ce(acta).pdf116,84 kBAdobe PDFView/Open
takuche_ce.pdf1,05 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI