Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/23985
Título : Implementación de inteligencia de negocios para predecir la demanda de recursos de ingeniería en entornos multiproyecto
Autor : Mendoza Carranza, Kevin Sergio
Asesor : Salgado Canal, José Antonio
Palabras clave : Proyecto de construcción;Sistema de información;Predicciones;Inteligencia de negocios
Fecha de publicación : 2022
Editorial : Universidad Nacional de Ingeniería
Resumen : En los proyectos de ingeniería y construcción, predecir la demanda de trabajo de los recursos de un proyecto para poder tomar decisiones con respecto al futuro de ellos es un problema complejo de resolver. Ahora, si ya un solo proyecto es complejo de predecir, imaginemos que tan complicado puede ser predecir la demanda de trabajo de todo un programa o portafolio de proyectos de una organización. Ello lleva a los profesionales de gestión de proyectos a desarrollar distintos procesos y herramientas de gestión dentro de las organizaciones con el objetivo de resolver este gran problema y así poder tomar las mejores decisiones en pro del beneficio de la compañía y garantizar la rentabilidad, la continuidad del negocio y las operaciones de una organización. El problema se torna aún más complejo cuando la organización opera en un entorno multiproyecto, en el cual los recursos de los que dispone no trabajan asignados en un proyecto único, sino, pueden trabajar simultáneamente en varios proyectos en paralelo. La mayoría de los equipos de gestión, planificación y control de proyectos de estas organizaciones usa herramientas en Excel con la finalidad de generar información que ayude a resolver la problemática y mejore la toma de decisiones. Sin embargo, estas herramientas aisladas son muy complejas de actualizar debido a la dispersión de los datos aleatorios generados por todas las áreas de la organización y requiere de muchos recursos para poder realizarse la integración, compilación, análisis, control de calidad, corrección de la información, homologación de los datos y emisión de reportes. El PMI define procesos para la gestión de portafolios que permite gestionar la demanda de recursos de una organización cuantificando la capacidad instalada y gestionándola en función de la demanda proyectada. Esto en teoría parece muy lógico y sencillo de realizar, sin embargo, sin una herramienta que permita generar dicha información para ser analizada, se vuelve imposible poder lograr el objetivo. Por tanto, en este trabajo se detalla la implementación de un modelo de inteligencia de negocios elaborado principalmente con Microsoft Power BI y otras herramientas comerciales de bajo costo comparados con un ERP, tales como: Primavera P6, licencia de Sharepoint, licencia de Office, etc. que tiene como finalidad principal predecir la demanda de recursos de una organización que trabaja en un entorno multiproyecto para mejorar la toma de decisiones. Esta solución puede ser fácilmente replicada a cualquier organización que opere en condiciones similares, principalmente organizaciones pequeñas y medianas con problemáticas en gestión de proyectos identificadas, puesto que, la herramienta permite mejorar la salud de la empresa, ya que, contiene indicadores y variables que permiten conocer las proyecciones de trabajo, la rentabilidad de la empresa, la utilización de los recursos, su eficiencia, así como reportes y gráficos intuitivos de capacidad, ventas y costos, ejecutados y proyectados. Adicionalmente esta solución reporta indicadores para proyectos que permiten conocer el desempeño de las líneas base de cada uno de ellos y otros indicadores varios.
URI : http://hdl.handle.net/20.500.14076/23985
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones: Ingeniería Civil

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
mendoza_ck.pdf17,92 MBAdobe PDFVisualizar/Abrir
informe_de_similitud.pdf65,58 kBAdobe PDFVisualizar/Abrir
mendoza_ck(acta).pdf111,59 kBAdobe PDFVisualizar/Abrir
carta_de_autorización.pdf59,27 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI