Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/24521
Título : Bivariant K-Theory of generalized Weyl algebras
Autor : Gutiérrez Alva, Julio Josué
Asesor : Palacios Baldeón, Joe Albino
Palabras clave : Algebra de Weyl;Mátemática aplicada
Fecha de publicación : 2018
Editorial : Universidad Nacional de Ingeniería
Resumen : La K-teoría bivariante kkalg en la categoría Ica de algebras localmente convexas asigna grupos abelianos kknalg(A, B), n ∈ Z, a cada par de dichas álgebras A y B y existen aplicaciones bilineales kknalg(A, B) × kkmalg(B;C) kkn+malg(A,C) para A, B y C álgebras localmente convexas y m, n ∈ Z. Con este producto, podemos definir una categoría KKalg cuyos objetos son álgebras localmente convexas y cuyos morfismos están dados por los grupos graduados kk∗alg(A, B). De este modo, la K-teoría bivariante kkalg se puede ver como un funtor kkalg : lca → KKalg. Este funtor es universal con respecto a funtores split exactos, invariantes por diffotopías y K-estables. En particular, un isomorfismo en KKalg induce un isomorfismo en KKLp y en homología cíclica periódica bivariante HP. En [10], se determina que los invariantes del ´algebra de Weyl A1(C) = C⟨x, y|xy − yx = 1⟩ son los mismos que los de C. Esto es, se prueba que A1(C) es isomorfo a C en la categoría KKalg. En este trabajo, generalizamos el resultado a una familia de ´algebras de Weyl generalizadas. Como resultados del presente trabajo, calculamos la clase de isomorfismo en la categoría KKalg de todas las álgebras de Weyl generalizadas no conmutativas A = C[h](σ, P ), donde σ(h) = qh + ho es un automorfismo de C[h] y P ∈ C[h], excepto cuando q ̸= 1 es una raíz de la unidad.
The bivariant K-theory kkalg in the category lca of locally convex algebras asigns abelian groups kknalg (A, B), n ∈ Z to a pair A, B of such algebras and there are bilinear maps kknalg(A, B) × kkmalg(B;C) kkn+malg(A,C) for every A, B and C locally convex algebras and m, n ∈ Z. Using this product, we can define a category kkalg whose objects are locally convex algebras and whose morphisms are given by the graded groups kk∗alg(A, B). Then the bivariant K-theory kkalg can be seen as a functor kkalg : lca → kkalg. This functor is universal among split exact, diffotopy invariant and K-stable functors. In particular, an isomorphism in kkalg induces an isomorphism in KKLp and in bivariant periodic cyclic homology HP In [10], the invariants of the Weyl algebra A1(C) = C⟨x, y|xy − yx = 1⟩ are determined to be the same as those of C. That is, A1(C) is isomorphic to C in the category kkalg. In the present work, we generalize this result to a family of generalized Weyl algebras. As results, we compute the isomorphism class in the category kkalg of all non-commutative generalized Weyl algebras A = C[h](σ, P ), where σ(h) = qh + ho is an automorphism of C[h] and P ∈ C[h], except when q ̸= 1 is a root of unity.
URI : http://hdl.handle.net/20.500.14076/24521
Derechos: info:eu-repo/semantics/openAccess
Aparece en las colecciones: Doctorado

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
gutierrez_aj.pdf917,34 kBAdobe PDFVisualizar/Abrir
gutierrez_aj(acta).pdf186,43 kBAdobe PDFVisualizar/Abrir
informe_de_similitud.pdf272,79 kBAdobe PDFVisualizar/Abrir
carta_de_autorización.pdf186,04 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI