Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.14076/4146
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOcaña, Eladio-
dc.contributor.authorCotrina, John-
dc.contributor.authorBueno, Orestes-
dc.creatorBueno, Orestes-
dc.creatorOcaña, Eladio-
dc.creatorCotrina, John-
dc.date.accessioned2017-08-14T16:19:30Z-
dc.date.available2017-08-14T16:19:30Z-
dc.date.issued2014-03-
dc.identifier.issn0233-1934-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/4146-
dc.description.abstractWe prove that the notions of -cyclic quasimonotonicity and -cyclic monotonicity are equivalent for affine maps defined on Banach spaces. First this is done in a finite dimensional space by using the index of asymmetry for matrices defined by J.-P. Crouzeix and C. Gutan. Then this equivalence is extended to general Banach spaces.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherTaylor and Francis Ltd.es
dc.relation.urihttp://dx.doi.org/10.1080/02331934.2014.891031es
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectAffine multivalued mapses
dc.subjectPositive semidefinite matriceses
dc.subjectCyclic monotonicityes
dc.subjectMonotonicity+es
dc.subjectParamonotonicityes
dc.subjectCyclic quasimonotonicityes
dc.subjectIndex of asymmetryes
dc.titleEquivalence between p-cyclic quasimonotonicity and p-cyclic monotonicity of affine mapses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.journalOptimizationes
dc.identifier.doi10.1080/02331934.2014.891031es
dc.contributor.emaileocana@imca.edu.pees
Appears in Collections:Instituto General de Investigación (IGI)

Files in This Item:
File Description SizeFormat 
Equivalence between p -cyclic quasimonotonicity and p -cyclic monotonicity of affine maps.pdf151,64 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI