Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.14076/4146
Title: | Equivalence between p-cyclic quasimonotonicity and p-cyclic monotonicity of affine maps |
Authors: | Ocaña, Eladio Cotrina, John Bueno, Orestes |
Keywords: | Affine multivalued maps;Positive semidefinite matrices;Cyclic monotonicity;Monotonicity+;Paramonotonicity;Cyclic quasimonotonicity;Index of asymmetry |
Issue Date: | Mar-2014 |
Publisher: | Taylor and Francis Ltd. |
Related URI: | http://dx.doi.org/10.1080/02331934.2014.891031 |
Abstract: | We prove that the notions of -cyclic quasimonotonicity and -cyclic monotonicity are equivalent for affine maps defined on Banach spaces. First this is done in a finite dimensional space by using the index of asymmetry for matrices defined by J.-P. Crouzeix and C. Gutan. Then this equivalence is extended to general Banach spaces. |
URI: | http://hdl.handle.net/20.500.14076/4146 |
ISSN: | 0233-1934 |
E-mail: | eocana@imca.edu.pe |
Rights: | info:eu-repo/semantics/restrictedAccess |
Appears in Collections: | Instituto General de Investigación (IGI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Equivalence between p -cyclic quasimonotonicity and p -cyclic monotonicity of affine maps.pdf | 151,64 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License
Indexado por: