Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.14076/4146
Title: Equivalence between p-cyclic quasimonotonicity and p-cyclic monotonicity of affine maps
Authors: Ocaña, Eladio
Cotrina, John
Bueno, Orestes
Keywords: Affine multivalued maps;Positive semidefinite matrices;Cyclic monotonicity;Monotonicity+;Paramonotonicity;Cyclic quasimonotonicity;Index of asymmetry
Issue Date: Mar-2014
Publisher: Taylor and Francis Ltd.
Related URI: http://dx.doi.org/10.1080/02331934.2014.891031
Abstract: We prove that the notions of -cyclic quasimonotonicity and -cyclic monotonicity are equivalent for affine maps defined on Banach spaces. First this is done in a finite dimensional space by using the index of asymmetry for matrices defined by J.-P. Crouzeix and C. Gutan. Then this equivalence is extended to general Banach spaces.
URI: http://hdl.handle.net/20.500.14076/4146
ISSN: 0233-1934
E-mail: eocana@imca.edu.pe
Rights: info:eu-repo/semantics/restrictedAccess
Appears in Collections:Instituto General de Investigación (IGI)

Files in This Item:
File Description SizeFormat 
Equivalence between p -cyclic quasimonotonicity and p -cyclic monotonicity of affine maps.pdf151,64 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI