Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.14076/4441
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorEchegaray Castillo, William Carlos-
dc.contributor.authorPonce Reyes, Henry Edwin-
dc.creatorPonce Reyes, Henry Edwin-
dc.creatorPonce Reyes, Henry Edwin-
dc.date.accessioned2017-09-01T15:58:15Z-
dc.date.available2017-09-01T15:58:15Z-
dc.date.issued2014-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/4441-
dc.description.abstractEn el capítulo 1 establecemos los conceptos preliminares sobre el análisis no estándar, como la construcción ultra producto, la que nos permitirá construir el conjunto de los números reales no estándar (∗R) definiendo en el lo que es un infinitesimal, así como los conjuntos internos y externos como subconjuntos de ∗R. Definimos una superestructura de un modelo estándar X y mencionamos el principio de definición interna así como el muy importante principio de transferencia. En el capítulo 2 establecemos la formulación no estándar de conceptos y resultados básicos en espacios topológicos, espacios métricos y espacios euclidianos, tales como conjuntos abiertos y cerrados, conjuntos compactos, el Teorema de Bolzano Weierstrass, topología producto, el teorema de Tychonov, continuidad y el Teorema de Ascoli no estándar. En el capítulo 3 desarrollamos una teoría de integración no estándar, con la estandarización (L, I) de una estructura de integración interna (L, I). Asimismo desarrollamos una teoría de la medida para tales estructuras de integración. Definimos un espacio de medida (X, MX, µX ), donde X ⊂ Rn es abierto o cerrado. Establecemos una teoría de integración sobre Rn, estudiamos el teorema de Representación de Riesz, así como teoremas básicos de convergencia para sucesiones de funciones integrables que no son necesariamente monótonas. En el capítulo 4 presentamos algunas aplicaciones de las estructuras de integración no estándar y su teoría de la medida en teoría de la probabilidad, en particular a los procesos estocásticos. Asimismo mostramos algunas aplicaciones del Análisis No estándar concentrándonos en los tópicos de integración Estocástica. Finalmente damos las conclusiones del presente trabajo.es
dc.description.uriTesises
dc.formatapplication/pdfes
dc.language.isospaes
dc.publisherUniversidad Nacional de Ingenieríaes
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectAnálisis matemático no estándares
dc.subjectEspacios topológicoses
dc.titleAnálisis no estándar y algunas de sus aplicacioneses
dc.typeinfo:eu-repo/semantics/bachelorThesises
thesis.degree.nameLicenciado en Matemáticaes
thesis.degree.grantorUniversidad Nacional de Ingeniería. Facultad de Cienciases
thesis.degree.levelTítulo Profesionales
thesis.degree.disciplineMatemáticaes
thesis.degree.programLicenciaturaes
Aparece en las colecciones: Matemáticas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ponce_rh.pdf3,4 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI