Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.14076/5821
Title: Captura de CO2 en centrales energéticas con post-combustión de combustibles fósiles
Authors: Echevarria Huamán, Ruth Nataly
Advisors: Chávarri Marín, Herminia Violeta
Keywords: Procesos industriales;Métodos de captura CO2;Proyectos integrados
Issue Date: 2016
Publisher: Universidad Nacional de Ingeniería
Abstract: Actualmente el planeta y la humanidad están bajo seria amenaza debido al calentamiento global, el cual esta relacionado a un modelo energético global dependiente del petróleo, carbón y gas. La creciente preocupación, por los normes impactos negativos, por la generación y el consumo de energía, han reavivado el interés en el estudio de la estructura energética y el desarrollo de nuevas tecnologías de bajo carbono. Los combustibles fósiles proporcionaron alrededor del 82% de la energía comercial mundial en el 2012 (Informe Estratégico de la Fundación para la Sostenibilidad Energética Y Ambiental, Marzo 2015), implicando una creciente concentración de gases de efecto invernadero en la atmósfera, con el potencial de ocasionar cambios significativos en el clima, con efectos económicos y sociales graves. Se requiere urgente la transición del sistema global basado en combustibles fósiles hacia tecnologías de bajas emisiones de GEI, para mitigar el cambio climático a largo plazo; a la vez fomentar el acceso masivo de la población a la energía; sin embargo, al parecer no existe una solución rápida, estas transiciones son intrínsecamente lentas. La “Captura y Secuestro/Uso de Carbono” (CCUS). Un sistema para atrapar el CO2 por la quema de combustibles fósiles y almacenarlo bajo el mar, la superficie terrestre o utilizarlo en procesos industriales; ha pasado a formar parte de una iniciativa mundial de investigación y desarrollo. El CCSU permitirá el continuo uso de recursos fósiles y el desarrollo sostenible gracias a la aplicación de proyectos como el MDL (Mecanismo de Desarrollo Limpio). Seguido de la introducción, donde se presenta la problemática, motivación y objetivos de la tesis. El capítulo II, presenta el marco referencial con información actualizada de las emisiones CO2, relacionadas al sector Energético y sus implicancias con el Medio ambiente. Así como el análisis comparativo de escenarios Baseline y BLUE Map, con el fin de predecir el rol de esta tecnología a futuro. Siendo el CCUS un Mecanismo de Desarrollo Limpio, se mencionan sus perspectivas, que plantearían oportunidades de desarrollo tecnológico, sustentable y sostenible para países en desarrollo como el Perú. Con la implementación de acciones que aumenten la competitividad como país y reduzcan las emisiones de GEI al mismo tiempo. El capítulo III, enmarca al marco teórico sobre la generación energética, citando sus principales emisiones. También se dan las definiciones de la captura Post-combustión de CO2 en centrales energéticas, así como la revisión de los métodos de separación, con más potencial de desarrollo tales como: Absorción, Adsorción, Membranas y el Método Criogénico. En el capítulo IV se realiza el desarrollo de la tesis, se muestra el análisis actual del desarrollo de los proyectos integrados a larga escala de CCUS (LSIPs) a nivel global, clasificados según el modelo de ciclo de vida de Worley Parsons. También se citan las perspectivas a futuro de esta tecnología en el Perú. El análisis FODA, los principales desafíos y su roadmap en forma general son revizados. Se presenta el esquema de integración de la captura de CO2 en centrales energéticas de carbón y gas natural. Asimismo, la absorción regeneración química del CO2 por aminas, método ampliamente utilizado en variedad de procesos industriales es estudiado, utilizando el modelo Electrolítico Ratesep del simulador Aspen Plus versión 8, comprobándose la efectividad del MEA, con un mínimo de consumo energético en el rehervidor durante la regeneración. Aquí se describe el marco termodinámico, con el análisis de sensibilidad se optimizan las variables de diseño para la simulación. Los resultados obtenidos están en concordancia con el rango actual de estos procesos a nivel piloto. Por último, también se analiza los datos técnico-económicos para la captura de CO2 en centrales eléctricas con/sin CCUS. La mayoría de datos disponibles proceden de estudios revisados que describen instalaciones en los E.E.U.U, Europa, y un análisis en China. Las tendencias de costo y performance son presentadas en base a estimaciones publicadas durante los años 2006 al 2010 por cerca de 50 instalaciones de captura de CO2 en centrales eléctricas.Todos los datos de costeo, cubren los relacionados con la captura y compresión de CO2 a presiones supercríticas, así como su acondicionamiento para el transporte (pero no su transporte y almacenamiento). Se analizan los casos: Post - Combustión CO2 captura en centrales de carbón utilizando aminas. Post -Combustión CO2 captura en centrales de gas natural utilizando aminas.
It is now recognized that this planet and the mankind are under serious threatof global warming, which is related to a global energy model dependent on oil, coal and gas. Thus, the growing concern at the enormous negative impacts of the generation and consumption of energy, have increase the interest in the change of the grid energy and the development of low carbon technologies. Fossil fuels provided about 82% of world commercial energy in 2012 (Strategic Report of the Foundation for Energy&Environmental Sustainability, 2015), implying a rise concentration of greenhouse gases in the atmosphere. The transition from the global fossil fuel system to low GHG emissions is urgently needed to mitigate climate change in the long term; While at the same time promoting mass access to energy for the population; However, there seems to be no quick fix, these transitions are inherently slow. The " Carbon Capture and Storage or Use" (CCUS), is a system to capture CO2 from burning fossil fuels and store it under the sea or land surface or use in industrial processes; it has become part of a global initiative to research and development. The CCSU allow the continued use of fossil resources and sustainable development through the implementation of projects such as CDM (Clean Development Mechanism) to promote technology transfer, generating Jobs and improving the quality of life in society. Following the introduction, the problematic situation, the motivation and objectives of the thesis are presented. In Chapter II, I present the information on the level and growth of CO2 emissions and its implications with the Environment. In order to predict possible future situation, I use the baseline and comparative scenarios (Blue Map), which reflect carbon emission trajectories under the current policy framework and a new policy framework, respectively. Since CCUS is a Clean Development Mechanism, its perspectives are mentioned, those mean opportunities for technological development, sustainable growing for developing countries such as Peru, which can implement actions to increase their country's competitiveness, and reduce GHG emissions at the same time. Chapter III covers the theoretical framework of energy generation in coal and natural gas plants, citing their main emissions, and emphasizes the study of postcombustión CO2 capture in these power plants, a review of the most relevant methods of separation, such as: Absorption, Adsorption, Membranes and the Cryogenic Method are presented. In Chapter IV the thesis is developed, the current analysis of the development of integrated large-scale CCUS (LSIPs) projects at global level is presented according to the Worley Parsons lifecycle model. It also indicates the future prospects of this technology in Peru. An SWOT analysis was done; the main challenges and roadmap were quoted in general term. The scheme for the integration of CO2 capture in coal and natural gas power plants is presented. Mainly the chemical absorption and regeneration of CO2 by amines, a method widely used in a variety of industrial processes is studied. The modeling for the process of chemical separation of CO2, which is performed using the electrolytic Ratesep model of Aspen Plus version 8 simulators, here the effectiveness of the MEA solvent is studied, aiming to achieve elimination the high concentration of CO2 with a minimum of energy consumption in the reboiler. The description of the thermodynamic framework, with sensitivity analysis we optimize the design variables for the simulation.The results are consistent with the current range of these processes at the pilot level. Finally, the analysis techno-economic data for CO2 capture from power plants with/without CCSU are presented. Cost and performance trends are shown based on estimates published over the years 2006 to 2010 for about 50 CO2 capture installations at power plants. All cost data, including LCOE and cost of CO2 avoided, cover costs related to the capture and compression of CO2 to supercritical pressures, as well as the conditioning of CO2 for transportation (but not for CO2 transport and storage). Most techno-economic data available from the reviewed studies describe capture installations in the United States, followed by studies on European power plants. An analysis of CO2 capture cost and performance in China is included here. These cases are presented: Post combustion CO2 capture from coal-fired power generation by amines. Post combustion CO2 capture from natural gas combined cycles.by amines.
URI: http://hdl.handle.net/20.500.14076/5821
Rights: info:eu-repo/semantics/restrictedAccess
Appears in Collections:Ingeniería Química

Files in This Item:
File Description SizeFormat 
echevarria_hr.pdf5,19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI